Past Research Highlights

Improvement of atmospheric remote sensing measurement techniques

2024-04-02

We introduce a new method for improving aerosol typing by lidar, through characterizing depolarization measurements using a reference system. Focusing on the Nicosia CIMEL CE376 lidar system and utilizing as reference the Polly XT in Limassol, our study retrospectively applies the approach to measurements obtained during the 2021 Cyprus Fall campaign. We focus here on how aerosol particles in the atmosphere affect the polarization of light, which allows to identify desert dust and other aerosols.
We emphasize the significance of precise lidar measurements in advancing our comprehension of atmospheric aerosols and their implications for climate and human health.

Health effects of carbonaceous PM2.5 compounds from residential fuel combustion and road transport in Europe

2024-03-04

Exposure to fine particulate matter (PM2.5) is associated with an increased risk of morbidity and mortality. In Europe, residential fuel combustion and road transport emissions contribute significantly to PM2.5. Here, we study the contribution of the emissions from these sectors to long-term exposure and excess mortality in Europe. We quantified the impact of anthropogenic carbonaceous aerosols on excess mortality and performed a sensitivity analysis assuming that they are twice as toxic as inorganic particles. We find that total PM2.5 from residential combustion leads to 72,000 (95% confidence interval: 48,000–99,000) excess deaths per year, with about 40% attributed to carbonaceous aerosols. Similarly, road transport leads to about 35,000 (CI: 23,000–47,000) excess deaths per year, with 6,000 (CI: 4,000–9,000) due to carbonaceous particles. Assuming that carbonaceous aerosols are twice as toxic as other PM2.5 components, they contribute 80% and 37%, respectively, to residential fuel combustion and road transport-related deaths.

Field Evaluation of Low-cost Electrochemical Air Quality Gas Sensors at Extreme Temperature and Relative HumidityConditions

2024-02-05

Modern electrochemical gas sensors hold great potential for improving practices in Air Quality (AQ) monitoring as their low cost, ease of operation and compact design can enable dense observational networks and mobile measurements.

Emerging extreme heat conditions as part of thenew climate normal

2024-01-22

Based on an ensemble of global climate model simulations, we identify the absolute historical extremes expressed by several temperature indices. Considering projections under two future pathways (SSP1−2.6, SSP5−8.5), we investigate to what extent extreme heat conditions will become predominant during the rest of the century. The timing of a transition to prevailing hot weather extremes is critical for the development of mitigation and adaptation strategies; therefore, we also identify the projected first year
of such a transition, as well as the persistence in subsequent decades. Different aspects of heat extremes are investigated, including both maximum and minimum temperature.